Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Environ Res Public Health ; 20(1)2022 12 24.
Article in English | MEDLINE | ID: covidwho-2286193

ABSTRACT

With the outbreak of COVID-19, increasingly more attention has been paid to the effects of environmental factors on the immune system of organisms, because environmental pollutants may act in synergy with viruses by affecting the immunity of organisms. The immune system is a developing defense system formed by all metazoans in the course of struggling with various internal and external factors, whose damage may lead to increased susceptibility to pathogens and diseases. Due to a greater vulnerability of the immune system, immunotoxicity has the potential to be the early event of other toxic effects, and should be incorporated into environmental risk assessment. However, compared with other toxicity endpoints, e.g., genotoxicity, endocrine toxicity, or developmental toxicity, there are many challenges for the immunotoxicity test of environmental pollutants; this is due to the lack of detailed mechanisms of action and reliable assay methods. In addition, with the strong appeal for animal-free experiments, there has been a significant shift in the toxicity test paradigm, from traditional animal experiments to high-throughput in vitro assays that rely on cell lines. Therefore, there is an urgent need to build high-though put immunotoxicity test methods to screen massive environmental pollutants. This paper reviews the common methods of immunotoxicity assays, including assays for direct immunotoxicity and skin sensitization. Direct immunotoxicity mainly refers to immunosuppression, for which the assays mostly use mixed immune cells or isolated single cells from animals with obvious problems, such as high cost, complex experimental operation, strong variability and so on. Meanwhile, there have been no stable and standard cell lines targeting immune functions developed for high-throughput tests. Compared with direct immunotoxicity, skin sensitizer screening has developed relatively mature in vitro assay methods based on an adverse outcome pathway (AOP), which points out the way forward for the paradigm shift in toxicity tests. According to the experience of skin sensitizer screening, this paper proposes that we also should seek appropriate nodes and establish more complete AOPs for immunosuppression and other immune-mediated diseases. Then, effective in vitro immunotoxicity assay methods can be developed targeting key events, simultaneously coordinating the studies of the chemical immunotoxicity mechanism, and further promoting the paradigm shift in the immunotoxicity test.


Subject(s)
COVID-19 , Environmental Pollutants , Animals , Environmental Pollutants/toxicity , Toxicity Tests , Immune System , Risk Assessment
2.
Biomed Mater ; 17(1)2021 11 12.
Article in English | MEDLINE | ID: covidwho-1483337

ABSTRACT

Nanometric materials with biocidal properties effective against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and pathogenic bacteria could be used to modify surfaces, reducing the risk of touching transmission. In this work, we showed that a nanometric layer of bimetallic AgCu can be effectively deposited on polypropylene (PP) fibers. The virucidal properties of the AgCu nanofilm were evaluated by comparing the viral loads remaining on uncoated and coated PP after contact times between 2 and 24 h. Quantification of virion numbers for different initial concentrations indicated a reduction of more than 95% after 2 h of contact. The bactericidal action of the AgCu nanofilm was also confirmed by inoculating uncoated and coated PP with a pool of pathogenic bacteria associated with pneumonia (ESKAPE). Meanwhile, no cytotoxicity was observed for human fibroblasts and keratinocyte cells, indicating that the nanofilm could be in contact with human skin without threat. The deposition of the AgCu nanofilm on the nonwoven component of reusable cloth masks might help to prevent virus and bacterial infection while reducing the pollution burden related to the disposable masks. The possible mechanism of biocide contact action was studied by quantum chemistry calculations that show that the addition of Ag and/or Cu makes the polymeric fiber a better electron acceptor. This can promote the oxidation of the phospholipids present at both the virus and bacterial membranes. The rupture at the membrane exposes and damages the genetic material of the virus. More studies are needed to determine the mechanism of action, but the results reported here indicate that Cu and Ag ions are good allies, which can help protect us from the virus that has caused this disturbing pandemic.


Subject(s)
Biological Mimicry/drug effects , Copper/pharmacology , Disinfectants/pharmacology , Nanostructures , SARS-CoV-2/drug effects , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Cells, Cultured , Fibroblasts , Humans , Keratinocytes , Masks , Polypropylenes , Textiles , Toxicity Tests
3.
Int J Mol Sci ; 22(9)2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1389396

ABSTRACT

Chloroxylenol (PCMX) is applied as a preservative and disinfectant in personal care products, currently recommended for use to inactivate the SARS-CoV-2 virus. Its intensive application leads to the release of PCMX into the environment, which can have a harmful impact on aquatic and soil biotas. The aim of this study was to assess the mechanism of chloroxylenol biodegradation by the fungal strains Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373, and investigate the ecotoxicity of emerging by-products. The residues of PCMX and formed metabolites were analysed using GC-MS. The elimination of PCMX in the cultures of tested microorganisms was above 70%. Five fungal by-products were detected for the first time. Identified intermediates were performed by dechlorination, hydroxylation, and oxidation reactions catalysed by cytochrome P450 enzymes and laccase. A real-time quantitative PCR analysis confirmed an increase in CYP450 genes expression in C. elegans cells. In the case of T. versicolor, spectrophotometric measurement of the oxidation of 2,20-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) showed a significant rise in laccase activity during PCMX elimination. Furthermore, with the use of bioindicators from different ecosystems (Daphtoxkit F and Phytotoxkit), it was revealed that the biodegradation process of PCMX had a detoxifying nature.


Subject(s)
Cunninghamella/metabolism , Trametes/metabolism , Xylenes/metabolism , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Daphnia/drug effects , Daphnia/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation , Laccase/metabolism , Oxidation-Reduction , Toxicity Tests , Xylenes/analysis , Xylenes/pharmacology
4.
J Toxicol Sci ; 46(9): 425-435, 2021.
Article in English | MEDLINE | ID: covidwho-1389030

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 enters host cells by binding with the receptor angiotensin-converting enzyme 2 (ACE2). While ACE2 is expressed in multiple cell types, it has been implicated in the clinical progression of COVID-19 as an entry point for SARS-CoV-2 into respiratory cells. Human respiratory cells, such as airway and alveolar epithelial type II (ATII) cells, are considered essential for COVID-19 research; however, primary human respiratory cells are difficult to obtain. In the present study, we generated ATII and club cells from human induced pluripotent stem cells (hiPSCs) for SARS-CoV-2 infection and drug testing. The differentiated cells expressed ATII markers (SFTPB, SFTPC, ABCA3, SLC34A2) or club cell markers (SCGB1A1 and SCGB3A2). Differentiated cells, which express ACE2 and TMPRSS2, were infected with SARS-CoV-2. Remdesivir treatment decreased intracellular SARS-CoV-2 viral replication and, furthermore, treatment with bleomycin showed cytotoxicity in a concentration-dependent manner. These data suggest that hiPSC-derived AT2 and club cells provide a useful in vitro model for drug development.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Alveolar Epithelial Cells/drug effects , Antiviral Agents/pharmacology , Bleomycin/toxicity , Cell Differentiation , Induced Pluripotent Stem Cells/drug effects , SARS-CoV-2/drug effects , Toxicity Tests , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Cell Line , Cell Survival/drug effects , Host-Pathogen Interactions , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Phenotype , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Virus Replication/drug effects , COVID-19 Drug Treatment
5.
Food Chem Toxicol ; 152: 112239, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1202176

ABSTRACT

The outbreak of COVID-19 has posed a serious threat to global public health. Vaccination may be the most effective way to prevent and control the spread of the virus. The safety of vaccines is the focus of preclinical research, and the repeated dose toxicity test is the key safety test to evaluate the vaccine before clinical trials. The purpose of this study was (i) to observe the toxicity and severity of an inactivated SARS-CoV-2 vaccine (Vero cells) in rodent Sprague Dawley rats after multiple intramuscular injections under the premise of Good Laboratory Practice principles and (ii) to provide a basis for the formulation of a clinical trial scheme. The results showed that all animals in the experimental group were in good condition, no regular changes related to the vaccine were found in the detection of various toxicological indexes, and no noticeable stimulating reaction related to the vaccine was found in the injected local tissues. The neutralizing antibodies in the low- and high-dose vaccine groups began to appear 14 days after the last administration. In the negative control group, no neutralizing antibodies were observed from the administration period to the recovery period. Therefore, the repeated administration toxicity test of the inactivated SARS-CoV-2 vaccine (Vero cells) in Sprague Dawley rats showed no obvious toxic reaction. It was preliminarily confirmed that the vaccine can stimulate production of neutralizing antibodies and is safe in Sprague Dawley rats.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , Animals , COVID-19 , COVID-19 Vaccines/toxicity , Female , Male , Rats, Sprague-Dawley , Toxicity Tests , Vaccines, Inactivated/immunology , Vaccines, Inactivated/toxicity
6.
Science ; 368(6497): 1331-1335, 2020 06 19.
Article in English | MEDLINE | ID: covidwho-108792

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the etiological agent responsible for the global COVID-19 (coronavirus disease 2019) outbreak. The main protease of SARS-CoV-2, Mpro, is a key enzyme that plays a pivotal role in mediating viral replication and transcription. We designed and synthesized two lead compounds (11a and 11b) targeting Mpro Both exhibited excellent inhibitory activity and potent anti-SARS-CoV-2 infection activity. The x-ray crystal structures of SARS-CoV-2 Mpro in complex with 11a or 11b, both determined at a resolution of 1.5 angstroms, showed that the aldehyde groups of 11a and 11b are covalently bound to cysteine 145 of Mpro Both compounds showed good pharmacokinetic properties in vivo, and 11a also exhibited low toxicity, which suggests that these compounds are promising drug candidates.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/enzymology , Drug Design , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , COVID-19 , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases , Coronavirus Infections/drug therapy , Cysteine Endopeptidases , Dogs , Drug Evaluation, Preclinical , Female , Humans , Male , Mice , Molecular Structure , Pandemics , Pneumonia, Viral/drug therapy , Protein Structure, Tertiary , Rats, Sprague-Dawley , SARS-CoV-2 , Toxicity Tests , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL